Exercise 2

Use the same vector field to evaluate both sides of Eq. A.5-4 for the face $x_{1}=1$ in Exercise 1 .

Solution

Eq. A.5-4 states Stokes's theorem,

$$
\iint_{S}(\hat{\mathbf{n}} \cdot[\nabla \times \mathbf{v}]) d S=\oint_{C}(\hat{\mathbf{t}} \cdot \mathbf{v}) d C
$$

where $\hat{\mathbf{t}}$ is a unit vector tangent to the integration path C and $\hat{\mathbf{n}}$ is a unit vector in the direction the thumb points when the fingers of the right hand curl in the direction of the path. From Exercise 1, we have

$$
\mathbf{v}=\boldsymbol{\delta}_{1} x_{1}+\boldsymbol{\delta}_{2} x_{3}+\boldsymbol{\delta}_{3} x_{2}
$$

The Left-hand Side

To evaluate the left-hand side, determine the curl of \mathbf{v}.

$$
\nabla \times \mathbf{v}=\left|\begin{array}{ccc}
\boldsymbol{\delta}_{1} & \boldsymbol{\delta}_{2} & \boldsymbol{\delta}_{3} \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\
x_{1} & x_{3} & x_{2}
\end{array}\right|=\mathbf{0}
$$

As a result, the left-hand side is zero.

$$
\begin{aligned}
\iint_{S}(\hat{\mathbf{n}} \cdot[\nabla \times \mathbf{v}]) d S & =\iint_{S}(\hat{\mathbf{n}} \cdot \mathbf{0}) d S \\
& =0
\end{aligned}
$$

The Right-hand Side

The boundary of the $x_{1}=1$ face is made up of four paths as shown in the figure, so the closed loop integral splits up into four single integrals.

Figure 1: Schematic of the $x_{1}=1$ face and the integration path around its boundary.

$$
\oint_{C}(\hat{\mathbf{t}} \cdot \mathbf{v}) d C=\int_{C_{1}}(\hat{\mathbf{t}} \cdot \mathbf{v}) d C+\int_{C_{2}}(\hat{\mathbf{t}} \cdot \mathbf{v}) d C+\int_{C_{3}}(\hat{\mathbf{t}} \cdot \mathbf{v}) d C+\int_{C_{4}}(\hat{\mathbf{t}} \cdot \mathbf{v}) d C
$$

The tangent vector along C_{1} is $\boldsymbol{\delta}_{2}$, the tangent vector along C_{2} is $\boldsymbol{\delta}_{3}$, the tangent vector along C_{3} is $-\boldsymbol{\delta}_{2}$, and the tangent vector along C_{4} is $-\boldsymbol{\delta}_{3}$.

$$
\begin{aligned}
\oint_{C}(\hat{\mathbf{t}} \cdot \mathbf{v}) d C=\int_{C_{1}} & \boldsymbol{\delta}_{2} \cdot\left(\boldsymbol{\delta}_{1} x_{1}+\boldsymbol{\delta}_{2} x_{3}+\boldsymbol{\delta}_{3} x_{2}\right) d C+\int_{C_{2}} \boldsymbol{\delta}_{3} \cdot\left(\boldsymbol{\delta}_{1} x_{1}+\boldsymbol{\delta}_{2} x_{3}+\boldsymbol{\delta}_{3} x_{2}\right) d C \\
& +\int_{C_{3}}\left(-\boldsymbol{\delta}_{2}\right) \cdot\left(\boldsymbol{\delta}_{1} x_{1}+\boldsymbol{\delta}_{2} x_{3}+\boldsymbol{\delta}_{3} x_{2}\right) d C+\int_{C_{4}}\left(-\boldsymbol{\delta}_{3}\right) \cdot\left(\boldsymbol{\delta}_{1} x_{1}+\boldsymbol{\delta}_{2} x_{3}+\boldsymbol{\delta}_{3} x_{2}\right) d C
\end{aligned}
$$

Evaluate the dot products.

$$
\oint_{C}(\hat{\mathbf{t}} \cdot \mathbf{v}) d C=\int_{C_{1}} x_{3} d C+\int_{C_{2}} x_{2} d C+\int_{C_{3}}\left(-x_{3}\right) d C+\int_{C_{4}}\left(-x_{2}\right) d C
$$

Along the C_{1} path, $x_{3}=0$; along the C_{2} path, $x_{2}=2$; along the C_{3} path, $x_{3}=4$; and along the C_{4} path, $x_{2}=0$.

$$
\oint_{C}(\hat{\mathbf{t}} \cdot \mathbf{v}) d C=\int_{C_{1}} 0 d C+\int_{C_{2}} 2 d C+\int_{C_{3}}(-4) d C+\int_{C_{4}}(-0) d C
$$

Bring the constants in front of the nonzero integrals.

$$
\oint_{C}(\hat{\mathbf{t}} \cdot \mathbf{v}) d C=2 \int_{C_{2}} d C-4 \int_{C_{3}} d C
$$

The length of the C_{2} path is 4 , and the length of the C_{3} path is 2 . Therefore,

$$
\begin{aligned}
\oint_{C}(\hat{\mathbf{t}} \cdot \mathbf{v}) d C & =2(4)-4(2) \\
& =0 .
\end{aligned}
$$

We conclude that Stokes's theorem is verified.

